

Building editable wheels

Contents

	Basic workflow
	Create a project

	Specify what to expose

	Mapping individual files/packages
	Build the wheel

	Implementation Details
	Editables using .pth entries

	Package-specific paths

	Import hooks

	Reserved Names

	Use Cases
	Project directory installed “as is”

	Project directory installed under an explicit package name

	Installing part of a source directory

	Unsupported use cases

Indices and tables

	Index

	Module Index

	Search Page

Basic workflow

The editables project is designed to support build backends, allowing them
to declare what they wish to expose as “editable”, and returning a list of
support files that need to be included in the wheel generated by the
build_editable backend hook [https://peps.python.org/pep-0660/#build-editable].
Note that the editables library does not build wheel files directly - it
returns the content that needs to be added to the wheel, but it is the build
backend’s responsibility to actually create the wheel from that data.

Create a project

The first step is for the backend to create an “editable project”. The project
name must follow the normal rules for Python project names from
PEP 426 [https://peps.python.org/pep-0426/#name].

project = EditableProject("myproject")

Specify what to expose

Once the project has been created, the backend can specify which files should be
exposed when the editable install is done. There are two mechanisms currently
implemented for this.

Adding a directory to sys.path

To add a particular directory (typically the project’s “src” directory) to
sys.path at runtime, simply call the add_to_path method

project.add_to_path("src")

This will simply write the given directory into the .pth file added to the
wheel. See the “Implementation Details” section for more information. Note that
this method requires no runtime support.

Adding a directory as package content

To expose a directory as a package on sys.path, call the add_to_subpackage
method, giving the package name to use, and the path to the directory containing
the contents of that package.

For example, if the directory src contains a package my_pkg, which you want
to expose to the target interpreter as some.package.my_pkg, run the following:

project.add_to_subpackage("some.package", "src")

Note that everything in the source directory will be available under the given
package name, and the source directory should not contain an __init__.py
file (if it does, that file will simply be ignored).

Also, the target (some.package here) must not be an existing package that
is already part of the editable wheel. This is because its __init__.py file
will be overwritten by the one created by this method.

Mapping individual files/packages

To expose a single .py file as a module, call the map method, giving the
name by which the module can be imported, and the path to the implementation
.py file. It is possible to give the module a name that is not the same as
the implementation filename, although this is expected to be extremely uncommon.

project.map("module", "src/module.py")

To expose a directory with an __init__.py file as a package, the map
method is used in precisely the same way, but with the directory name:

project.map("mypackage", "src/mypackage")

The directory must be a Python package - i.e., it must contain an __init__.py
file, and the target package name must be a top-level name, not a dotted name.

Using the map method does require a runtime support module.

Build the wheel

Files to add

Once all of the content to expose is specified, the backend can start building
the wheel. To determine what files to write to the wheel, the files method
should be used. This returns a sequence of pairs, each of which specifies a
filename, and the content to write to that file. Both the name and the content
are strings, and so should be encoded appropriately (i.e., in UTF-8) when
writing to the wheel.

for name, content in my_project.files():
 wheel.add_file(name, content)

Note that the files to be added must be included unchanged - it is not
supported for the caller to modify the returned content. Also, it is the
caller’s responsibility to ensure that none of the generated files clash with
files that the caller is adding to the wheel as part of its own processes.

Runtime dependencies

If the map method is used, the resulting wheel will require that the runtime
support module is installed. To ensure that is the case, dependency metadata
must be added to the wheel. The dependencies method provides the required
metadata.

for dep in my_project.dependencies():
 wheel.metadata.dependencies.add(dep)

Note that if the backend only uses the add_to_path method, no runtime support
is needed, so the dependencies method will return an empty list. For safety,
and to protect against future changes, it should still be called, though.

Implementation Details

The key feature of a project that is installed in “editable mode” is that the
code for the project remains in the project’s working directory, and what gets
installed into the user’s Python installation is simply a “pointer” to that
code. The implication of this is that the user can continue to edit the project
source, and expect to see the changes reflected immediately in the Python
interpreter, without needing to reinstall.

The exact details of how such a “pointer” works, and indeed precisely how much
of the project is exposed to Python, are generally considered to be
implementation details, and users should not concern themselves too much with
how things work “under the hood”. However, there are practical implications
which users of this library (typically build backend developers) should be aware
of.

The basic import machinery in Python works by scanning a list of directories
recorded in sys.path and looking for Python modules and packages in these
directories. (There’s a lot more complexity behind the scenes, and interested
readers are directed to the Python documentation [https://docs.python.org] for
more details). The initial value of sys.path is set by the interpreter, but
there are various ways of influencing this.

As part of startup, Python checks various “site directories” on sys.path for
files called *.pth. In their simplest form, .pth files contain a list of
directory names, which are added to sys.path. In addition, for more advanced
cases, .pth files can also run executable code (typically, to set up import
hooks to further configure the import machinery).

Editables using .pth entries

The simplest way of setting up an editable project is to install a .pth file
containing a single line specifying the project directory. This will cause the
project directory to be added to sys.path at interpreter startup, making it
available to Python in “editable” form.

This is the approach which has been used by setuptools for many years, as part
of the setup.py develop command, and subsequently exposed by pip under the
name “editable installs”, via the command pip install --editable <project_dir>.

In general, this is an extremely effective and low-cost approach to implementing
editable installs. It does, however, have one major disadvantage, in that it does
not necessarily expose the same packages as a normal install would do. If the
project is not laid out with this in mind, an editable install may expose importable
files that were not intended. For example, if the project root directory is added
directly to the .pth file, import setup could end up running the project’s
setup.py! However, the recommended project layout, putting the Python source in
a src subdirectory (with the src directory then being what gets added to
sys.path) reduces the risk of such issues significantly.

The editables project implements this approach using the add_to_path method.

Package-specific paths

If a package sets the __path__ variable to a list of those directories, the
import system will search those directories when looking for subpackages or
submodules. This allows the user to “graft” a directory into an existing package,
simply by setting an appropriate __path__ value.

The editables project implements this approach using the add_to_subpackage method.

Import hooks

Python’s import machinery includes an “import hook” mechanism which in theory
allows almost any means of exposing a package to Python. Import hooks have been
used to implement importing from zip files, for example. It is possible, therefore,
to write an import hook that exposes a project in editable form.

The editables project implements an import hook that redirects the import of a
package to a filesystem location specifically designated as where that package’s
code is located. By using this import hook, it is possible to exercise precise
control over what is exposed to Python. For details of how the hook works,
readers should investigate the source of the editables.redirector module, part
of the editables package.

The editables project implements this approach for the map method. The
.pth file that gets written loads the redirector and calls a method on it
to add the requested mappings to it.

There are two downsides to this approach, as compared to the simple .pth file
mechanism - lack of support for implicit namespace packages, and the need for
runtime support code.

The first issue (lack of support for implicit namespace packages) is
unfortunate, but inherent in how Python (currently) implements the feature.
Implicit namespace package support is handled as part of how the core import
machinery does directory scans, and does not interact properly with the import
hook mechanisms. As a result, the editables import hook does not support
implicit namespace packages, and will probably never be able to do so without
help from the core Python implementation[1].

The second issue (the need for runtime support) is more of an inconvenience than
a major problem. Because the implementation of the import hook is non-trivial,
it should be shared between all editable installs, to avoid conflicts between
import hooks, and performance issues from having unnecessary numbers of
identical hooks running. As a consequence, projects installed in this manner
will have a runtime dependency on the hook implementation (currently distributed
as part of editables, although it could be split out into an independent
project).

Reserved Names

The editables project uses the following file names when building an editable
wheel. These should be considered reserved. While backends would not normally
add extra files to wheels generated using this library, they are allowed to do
so, as long as those files don’t use any of the reserved names.

	<project_name>.pth

	_editable_impl_<project_name>*.py

Here, <project_name> is the name supplied to the EditableProject constructor,
normalised as described in PEP 503 [https://peps.python.org/pep-0503/#normalized-names],
with dashes replaced by underscores.

[1]
The issue is related to how the same namespace can be present in multiple
sys.path entries, and must be dynamically recomputed if the filesystem
changes while the interpreter is running.

Use Cases

We will cover here the main supported use cases for editable installs,
including the recommended approaches for exposing the files to the
import system.

Project directory installed “as is”

A key example of this is the recommended “src layout” for a project,
where a single directory (typically named src) is copied unchanged
into the target site-packages.

For this use case, the project.add_to_path method is ideal, making
the project directory available to the import system directly.

There are almost no downsides to this approach, as it is using core
import system mechanisms to manage sys.path. Furthermore, the method
is implemented using .pth files, which are recognised by static analysis
tools such as type checkers, and so editable installs created using this
method will be visible in such tools.

Project directory installed under an explicit package name

This is essentially the same as the previous use case, but rather than
installing the project directory directly into site-packages, it is
installed under a partocular package name. So, for example, if the
project has a src directory containing a package foo and a module
bar.py, the requirement is to install the contents of src as
my.namespace.foo and my.namespace.bar.

For this use case, the project.add_to_subpackage method is available.
This method creates the my.namespace package (by installing an __init__.py
file for it into site-packages) and gives that package a __path__ attribute
pointing to the source directory to be installed under that package name.

Again, this approach uses core import system mechanisms, and so will have
few or no downsides at runtime. However, because this approach relies on
runtime manipulation of sys.path, it will not be recognised by static
analysis tools.

Installing part of a source directory

The most common case for this is a “flat” project layout, where the
package and module files to be installed are stored alongside project
files such as pyproject.toml. This layout is typically not recommended,
particularly for new projects, although older projects may be using this
type of layout for historical reasons.

The core import machinery does not provide a “native” approach supporting
excluding part of a directory like this, so custom import hooks are needed
to implement it. At the time of writing, all such custom hook implementations
have limitations, and should be considered experimental. As a result, build
backends should always prefer one of the other implementation methods when
available.

The project.map method allows mapping of either a single Python file, or
a Python package directory, to an explicit top-level name in the import system.
It does this by installing a .pth file and a Python module. The .pth file
simply runs the Python module, and the module installs the requested set of
mappings using an import hook exported by the editables module.

Downsides of this approach are:

	The approach depends on the ability to run executable code from a .pth
file. While this is a supported capability of .pth files, it is
considered a risk, and there have been proposals to remove it. If that
were to happen, this mechanism would no longer work.

	It adds a runtime dependency on the editables module, rather than
just a build-time dependency.

	The import hook has known limitations when used with implicit namespace
packages - there is a CPython issue [https://github.com/python/cpython/issues/92054]
discussing some of the problems.

Unsupported use cases

In addition to the above there are a number of use cases which are explicitly
not supported by this library. That is not to say that editable installs
cannot do these things, simply that the build backend will need to provide
its own support.

Metadata changes

This library does not support dynamically changing installed project metadata
when the project source changes. Typically, a reinstall is needed in those
cases. A significant example of a metadata change is a change to the script
entry points, which affects what command-line executables are installed.

Binary extensions

Binary extensions require a build step when the source code is changed. This
library does not support any sort of automatic rebuilding, nor does it
support automatic reinstallation of binaries.

The build backend may choose to expose the “working” version of the built
binary, for example by placing a symbolic link to the binary in a directory
that is visible to the import system as a result of project.add_to_path,
but that would need to be implemented by the backend.

Mapping non-Python directories or files

The methods of an editable project are all intended explicitly for exposing
Python code to the import system. Other types of resource, such as data
files, are not supported, except in the form of package data physically
located in a Python package directory in the source.

Combining arbitrary code into a package

The library assumes that a typical project layout, at least roughly, matches
the installed layout - and in particular that Python package directories are
“intact” in the source. Build backends can support more complex structures,
but in order to expose them as editable installs, they need to create some
form of “live” reflection of the final layout in a local directory (for
example by using symbolic links) and create the editable install using that
shadow copy of the source.

It is possible that a future version of this library may add support for
more complex mappings of this form, but that would likely require a
significant enhancement to the import hook mechanism being used, and would
be a major, backward incompatible, change. There are currently no plans for
such a feature, though.

Index

 nav.xhtml

 Table of Contents

 		
 Building editable wheels

 		
 Basic workflow

 		
 Create a project

 		
 Specify what to expose

 		
 Adding a directory to sys.path

 		
 Adding a directory as package content

 		
 Mapping individual files/packages

 		
 Build the wheel

 		
 Files to add

 		
 Runtime dependencies

 		
 Implementation Details

 		
 Editables using .pth entries

 		
 Package-specific paths

 		
 Import hooks

 		
 Reserved Names

 		
 Use Cases

 		
 Project directory installed “as is”

 		
 Project directory installed under an explicit package name

 		
 Installing part of a source directory

 		
 Unsupported use cases

 		
 Metadata changes

 		
 Binary extensions

 		
 Mapping non-Python directories or files

 		
 Combining arbitrary code into a package

_static/file.png

_static/minus.png

_static/plus.png

