
editables
Release 0.4

Paul Moore

Jul 06, 2023

CONTENTS

1 Basic workflow 1
1.1 Create a project . 1
1.2 Specify what to expose . 1

2 Mapping individual files/packages 3
2.1 Build the wheel . 3

3 Implementation Details 5
3.1 Editables using .pth entries . 5
3.2 Package-specific paths . 6
3.3 Import hooks . 6
3.4 Reserved Names . 6

4 Use Cases 7
4.1 Project directory installed “as is” . 7
4.2 Project directory installed under an explicit package name . 7
4.3 Installing part of a source directory . 7
4.4 Unsupported use cases . 8

5 Indices and tables 11

i

ii

CHAPTER

ONE

BASIC WORKFLOW

The editables project is designed to support build backends, allowing them to declare what they wish to expose as
“editable”, and returning a list of support files that need to be included in the wheel generated by the build_editable
backend hook. Note that the editables library does not build wheel files directly - it returns the content that needs to
be added to the wheel, but it is the build backend’s responsibility to actually create the wheel from that data.

1.1 Create a project

The first step is for the backend to create an “editable project”. The project name must follow the normal rules for
Python project names from PEP 426.

project = EditableProject("myproject")

1.2 Specify what to expose

Once the project has been created, the backend can specify which files should be exposed when the editable install is
done. There are two mechanisms currently implemented for this.

1.2.1 Adding a directory to sys.path

To add a particular directory (typically the project’s “src” directory) to sys.path at runtime, simply call the
add_to_path method

project.add_to_path("src")

This will simply write the given directory into the .pth file added to the wheel. See the “Implementation Details”
section for more information. Note that this method requires no runtime support.

1

https://peps.python.org/pep-0660/#build-editable
https://peps.python.org/pep-0426/#name

editables, Release 0.4

1.2.2 Adding a directory as package content

To expose a directory as a package on sys.path, call the add_to_subpackage method, giving the package name to
use, and the path to the directory containing the contents of that package.

For example, if the directory src contains a package my_pkg, which you want to expose to the target interpreter as
some.package.my_pkg, run the following:

project.add_to_subpackage("some.package", "src")

Note that everything in the source directory will be available under the given package name, and the source directory
should not contain an __init__.py file (if it does, that file will simply be ignored).

Also, the target (some.package here) must not be an existing package that is already part of the editable wheel. This
is because its __init__.py file will be overwritten by the one created by this method.

2 Chapter 1. Basic workflow

CHAPTER

TWO

MAPPING INDIVIDUAL FILES/PACKAGES

To expose a single .py file as a module, call the map method, giving the name by which the module can be imported,
and the path to the implementation .py file. It is possible to give the module a name that is not the same as the
implementation filename, although this is expected to be extremely uncommon.

project.map("module", "src/module.py")

To expose a directory with an __init__.py file as a package, the map method is used in precisely the same way, but
with the directory name:

project.map("mypackage", "src/mypackage")

The directory must be a Python package - i.e., it must contain an __init__.py file, and the target package name must
be a top-level name, not a dotted name.

Using the map method does require a runtime support module.

2.1 Build the wheel

2.1.1 Files to add

Once all of the content to expose is specified, the backend can start building the wheel. To determine what files to write
to the wheel, the files method should be used. This returns a sequence of pairs, each of which specifies a filename,
and the content to write to that file. Both the name and the content are strings, and so should be encoded appropriately
(i.e., in UTF-8) when writing to the wheel.

for name, content in my_project.files():
wheel.add_file(name, content)

Note that the files to be added must be included unchanged - it is not supported for the caller to modify the returned
content. Also, it is the caller’s responsibility to ensure that none of the generated files clash with files that the caller is
adding to the wheel as part of its own processes.

3

editables, Release 0.4

2.1.2 Runtime dependencies

If the map method is used, the resulting wheel will require that the runtime support module is installed. To ensure
that is the case, dependency metadata must be added to the wheel. The dependencies method provides the required
metadata.

for dep in my_project.dependencies():
wheel.metadata.dependencies.add(dep)

Note that if the backend only uses the add_to_path method, no runtime support is needed, so the dependencies
method will return an empty list. For safety, and to protect against future changes, it should still be called, though.

4 Chapter 2. Mapping individual files/packages

CHAPTER

THREE

IMPLEMENTATION DETAILS

The key feature of a project that is installed in “editable mode” is that the code for the project remains in the project’s
working directory, and what gets installed into the user’s Python installation is simply a “pointer” to that code. The
implication of this is that the user can continue to edit the project source, and expect to see the changes reflected
immediately in the Python interpreter, without needing to reinstall.

The exact details of how such a “pointer” works, and indeed precisely how much of the project is exposed to Python,
are generally considered to be implementation details, and users should not concern themselves too much with how
things work “under the hood”. However, there are practical implications which users of this library (typically build
backend developers) should be aware of.

The basic import machinery in Python works by scanning a list of directories recorded in sys.path and looking for
Python modules and packages in these directories. (There’s a lot more complexity behind the scenes, and interested
readers are directed to the Python documentation for more details). The initial value of sys.path is set by the inter-
preter, but there are various ways of influencing this.

As part of startup, Python checks various “site directories” on sys.path for files called *.pth. In their simplest form,
.pth files contain a list of directory names, which are added to sys.path. In addition, for more advanced cases, .pth
files can also run executable code (typically, to set up import hooks to further configure the import machinery).

3.1 Editables using .pth entries

The simplest way of setting up an editable project is to install a .pth file containing a single line specifying the project
directory. This will cause the project directory to be added to sys.path at interpreter startup, making it available to
Python in “editable” form.

This is the approach which has been used by setuptools for many years, as part of the setup.py develop command,
and subsequently exposed by pip under the name “editable installs”, via the command pip install --editable
<project_dir>.

In general, this is an extremely effective and low-cost approach to implementing editable installs. It does, however,
have one major disadvantage, in that it does not necessarily expose the same packages as a normal install would do.
If the project is not laid out with this in mind, an editable install may expose importable files that were not intended.
For example, if the project root directory is added directly to the .pth file, import setup could end up running the
project’s setup.py! However, the recommended project layout, putting the Python source in a src subdirectory (with
the src directory then being what gets added to sys.path) reduces the risk of such issues significantly.

The editables project implements this approach using the add_to_path method.

5

https://docs.python.org

editables, Release 0.4

3.2 Package-specific paths

If a package sets the __path__ variable to a list of those directories, the import system will search those directories
when looking for subpackages or submodules. This allows the user to “graft” a directory into an existing package,
simply by setting an appropriate __path__ value.

The editables project implements this approach using the add_to_subpackage method.

3.3 Import hooks

Python’s import machinery includes an “import hook” mechanism which in theory allows almost any means of exposing
a package to Python. Import hooks have been used to implement importing from zip files, for example. It is possible,
therefore, to write an import hook that exposes a project in editable form.

The editables project implements an import hook that redirects the import of a package to a filesystem location
specifically designated as where that package’s code is located. By using this import hook, it is possible to exercise
precise control over what is exposed to Python. For details of how the hook works, readers should investigate the source
of the editables.redirector module, part of the editables package.

The editables project implements this approach for the map method. The .pth file that gets written loads the redi-
rector and calls a method on it to add the requested mappings to it.

There are two downsides to this approach, as compared to the simple .pth file mechanism - lack of support for implicit
namespace packages, and the need for runtime support code.

The first issue (lack of support for implicit namespace packages) is unfortunate, but inherent in how Python (currently)
implements the feature. Implicit namespace package support is handled as part of how the core import machinery does
directory scans, and does not interact properly with the import hook mechanisms. As a result, the editables import
hook does not support implicit namespace packages, and will probably never be able to do so without help from the
core Python implementation1.

The second issue (the need for runtime support) is more of an inconvenience than a major problem. Because the
implementation of the import hook is non-trivial, it should be shared between all editable installs, to avoid conflicts
between import hooks, and performance issues from having unnecessary numbers of identical hooks running. As a
consequence, projects installed in this manner will have a runtime dependency on the hook implementation (currently
distributed as part of editables, although it could be split out into an independent project).

3.4 Reserved Names

The editables project uses the following file names when building an editable wheel. These should be considered
reserved. While backends would not normally add extra files to wheels generated using this library, they are allowed
to do so, as long as those files don’t use any of the reserved names.

1. <project_name>.pth

2. _editable_impl_<project_name>*.py

Here, <project_name> is the name supplied to the EditableProject constructor, normalised as described in PEP
503, with dashes replaced by underscores.

1 The issue is related to how the same namespace can be present in multiple sys.path entries, and must be dynamically recomputed if the
filesystem changes while the interpreter is running.

6 Chapter 3. Implementation Details

https://peps.python.org/pep-0503/#normalized-names
https://peps.python.org/pep-0503/#normalized-names

CHAPTER

FOUR

USE CASES

We will cover here the main supported use cases for editable installs, including the recommended approaches for
exposing the files to the import system.

4.1 Project directory installed “as is”

A key example of this is the recommended “src layout” for a project, where a single directory (typically named src)
is copied unchanged into the target site-packages.

For this use case, the project.add_to_path method is ideal, making the project directory available to the import
system directly.

There are almost no downsides to this approach, as it is using core import system mechanisms to manage sys.path.
Furthermore, the method is implemented using .pth files, which are recognised by static analysis tools such as type
checkers, and so editable installs created using this method will be visible in such tools.

4.2 Project directory installed under an explicit package name

This is essentially the same as the previous use case, but rather than installing the project directory directly into site-
packages, it is installed under a partocular package name. So, for example, if the project has a src directory containing
a package foo and a module bar.py, the requirement is to install the contents of src as my.namespace.foo and
my.namespace.bar.

For this use case, the project.add_to_subpackage method is available. This method creates the my.namespace
package (by installing an __init__.py file for it into site-packages) and gives that package a __path__ attribute
pointing to the source directory to be installed under that package name.

Again, this approach uses core import system mechanisms, and so will have few or no downsides at runtime. However,
because this approach relies on runtime manipulation of sys.path, it will not be recognised by static analysis tools.

4.3 Installing part of a source directory

The most common case for this is a “flat” project layout, where the package and module files to be installed are stored
alongside project files such as pyproject.toml. This layout is typically not recommended, particularly for new
projects, although older projects may be using this type of layout for historical reasons.

The core import machinery does not provide a “native” approach supporting excluding part of a directory like this, so
custom import hooks are needed to implement it. At the time of writing, all such custom hook implementations have
limitations, and should be considered experimental. As a result, build backends should always prefer one of the other
implementation methods when available.

7

editables, Release 0.4

The project.map method allows mapping of either a single Python file, or a Python package directory, to an explicit
top-level name in the import system. It does this by installing a .pth file and a Python module. The .pth file simply
runs the Python module, and the module installs the requested set of mappings using an import hook exported by the
editables module.

Downsides of this approach are:

1. The approach depends on the ability to run executable code from a .pth file. While this is a supported capability
of .pth files, it is considered a risk, and there have been proposals to remove it. If that were to happen, this
mechanism would no longer work.

2. It adds a runtime dependency on the editables module, rather than just a build-time dependency.

3. The import hook has known limitations when used with implicit namespace packages - there is a CPython issue
discussing some of the problems.

4.4 Unsupported use cases

In addition to the above there are a number of use cases which are explicitly not supported by this library. That is not
to say that editable installs cannot do these things, simply that the build backend will need to provide its own support.

4.4.1 Metadata changes

This library does not support dynamically changing installed project metadata when the project source changes. Typ-
ically, a reinstall is needed in those cases. A significant example of a metadata change is a change to the script entry
points, which affects what command-line executables are installed.

4.4.2 Binary extensions

Binary extensions require a build step when the source code is changed. This library does not support any sort of
automatic rebuilding, nor does it support automatic reinstallation of binaries.

The build backend may choose to expose the “working” version of the built binary, for example by placing a symbolic
link to the binary in a directory that is visible to the import system as a result of project.add_to_path, but that
would need to be implemented by the backend.

4.4.3 Mapping non-Python directories or files

The methods of an editable project are all intended explicitly for exposing Python code to the import system. Other
types of resource, such as data files, are not supported, except in the form of package data physically located in a Python
package directory in the source.

8 Chapter 4. Use Cases

https://github.com/python/cpython/issues/92054

editables, Release 0.4

4.4.4 Combining arbitrary code into a package

The library assumes that a typical project layout, at least roughly, matches the installed layout - and in particular that
Python package directories are “intact” in the source. Build backends can support more complex structures, but in
order to expose them as editable installs, they need to create some form of “live” reflection of the final layout in a local
directory (for example by using symbolic links) and create the editable install using that shadow copy of the source.

It is possible that a future version of this library may add support for more complex mappings of this form, but that would
likely require a significant enhancement to the import hook mechanism being used, and would be a major, backward
incompatible, change. There are currently no plans for such a feature, though.

4.4. Unsupported use cases 9

editables, Release 0.4

10 Chapter 4. Use Cases

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

11

	Basic workflow
	Create a project
	Specify what to expose
	Adding a directory to sys.path
	Adding a directory as package content

	Mapping individual files/packages
	Build the wheel
	Files to add
	Runtime dependencies

	Implementation Details
	Editables using .pth entries
	Package-specific paths
	Import hooks
	Reserved Names

	Use Cases
	Project directory installed “as is”
	Project directory installed under an explicit package name
	Installing part of a source directory
	Unsupported use cases
	Metadata changes
	Binary extensions
	Mapping non-Python directories or files
	Combining arbitrary code into a package

	Indices and tables

